A The Study of Hyperspectral Image Classification Based on Support Vector Machine
نویسندگان
چکیده
The remote sensing technique has been widely use on the field of land cover classification. Traditionally, image classification is based on per-pixel which with the spectral of object. This kind of method do not considerate the spatial relationship between neighbor of pixels. Therefore many of study were focus of utilizes the texture information to distinguish between spatial characteristic. It promote classification overall accuracy effectively. But, there have the same deficiency while the texture with different object gives similar each other. Finally, Knowledge-based image interpretation method was adopted to overcome these kinds of drawback. Finding the best classified approach is usually a topic to be discussed on the image process. To testify the validity of SVM, this study chooses the dataset of hyperspectral imagery sensed by AVIRIS, with band selection by minimization of dependent information, added different scales of texture information as the origin information of image for classification. To improve the problem of characterizing different scales of textures, wavelet co-occurrence parameters, mean and standard deviation of different level discrete wavelet transform images are used as texture features. In this paper, the texture features and the gray scale value of image will be adopted as characteristic vector of training samples for SVM algorithm. Finally, several classification schemes based on different methodology are comparatively studied. The effectiveness of including texture measures in the classification is also analyzed.
منابع مشابه
Hyperspectral Images Classification by Combination of Spatial Features Based on Local Surface Fitting and Spectral Features
Hyperspectral sensors are important tools in monitoring the phenomena of the Earth due to the acquisition of a large number of spectral bands. Hyperspectral image classification is one of the most important fields of hyperspectral data processing, and so far there have been many attempts to increase its accuracy. Spatial features are important due to their ability to increase classification acc...
متن کاملSpectral-spatial classification of hyperspectral images by combining hierarchical and marker-based Minimum Spanning Forest algorithms
Many researches have demonstrated that the spatial information can play an important role in the classification of hyperspectral imagery. This study proposes a modified spectral–spatial classification approach for improving the spectral–spatial classification of hyperspectral images. In the proposed method ten spatial/texture features, using mean, standard deviation, contrast, homogeneity, corr...
متن کاملSub-pixel classification of hydrothermal alteration zones using a kernel-based method and hyperspectral data; A case study of Sarcheshmeh Porphyry Copper Mine and surrounding area, Kerman, Iran
Remote sensing image analysis can be carried out at the per-pixel (hard) and sub-pixel (soft) scales. The former refers to the purity of image pixels, while the latter refers to the mixed spectra resulting from all objects composing of the image pixels. The spectral unmixing methods have been developed to decompose mixed spectra. Data-driven unmixing algorithms utilize the reference data called...
متن کاملHigh performance of the support vector machine in classifying hyperspectral data using a limited dataset
To prospect mineral deposits at regional scale, recognition and classification of hydrothermal alteration zones using remote sensing data is a popular strategy. Due to the large number of spectral bands, classification of the hyperspectral data may be negatively affected by the Hughes phenomenon. A practical way to handle the Hughes problem is preparing a lot of training samples until the size ...
متن کاملFault diagnosis in a distillation column using a support vector machine based classifier
Fault diagnosis has always been an essential aspect of control system design. This is necessary due to the growing demand for increased performance and safety of industrial systems is discussed. Support vector machine classifier is a new technique based on statistical learning theory and is designed to reduce structural bias. Support vector machine classification in many applications in v...
متن کاملA new classification method based on pairwise SVM for facial age estimation
This paper presents a practical algorithm for facial age estimation from frontal face image. Facial age estimation generally comprises two key steps including age image representation and age estimation. The anthropometric model used in this study includes computation of eighteen craniofacial ratios and a new accurate skin wrinkles analysis in the first step and a pairwise binary support vector...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009